综合布线数据中心统筹设计技术

在最近进行的一次调查中,要求被调查者说出所在公司对正常运行时间的最低要求。针对这一问题,大约25%的人回答,他们最低的要求是99.999%!由此不难看出,为什么现在大部分企业数据中心都将系统可用性看成是最主要的设计因素。与此同时,从业者和设计人员却很难确定针对每个公司的 理想设计 。之所以备感棘手,其中涉及到诸多原因。首要原因当属数据中心较长的使用寿命。一个数据中心有可能维持10年甚至更长,设计人员通常不会介入如此长的时间,来获得确定如何改进设计所需的反馈。

与此同时,诸如微小的设计缺陷加上低劣的操作程序等各类因素也会引发很多问题。最终,也许正是由于人们对这方面了解不够致使改进设计工作遇到困难。我们只有边做边学,将从修建上一个数据中心过程中积累的经验,应用到新的数据中心上,并加以改进。

纵观现有众多高可用性数据中心,每个数据中心的设计和运营模式差异巨大,但在很多方面却又存在着相似点。通过整合各类数据中心的数据、反馈和目标,我们希望促进并协助设计或改进数据中心的过程。

本文要讨论的主要问题是:

●电源设计容量的供求不平衡;

●预测未来的电源需求;

●迅速改变数据中心的功率密度;

●建立能够有效分配电源的基础设施;

●增加新数据中心的热限制;

●创建和优化电源冗余选件;

●了解运营和培训的影响;

●解释实现 99.999% 的可行性;

●系统的恢复是如何影响可用性的。

UPS供电设计容量与实际需求无法平衡

在设计和建设数据中心时,人们将预测数据中心规模看成是一个基本的程序。但是,如果预测的数据中心设计寿命是10~15年,那么这项任务就变得异常困难。在这种类型的使用寿命期内,房间内的设备可能被新一代的设备 刷新 或更换四五次。IT设备的快速更新使得最基本的未来容量预测成为泡影。

例如,摩尔定律指出集成电路的集成度每18个月翻一番。对于每一代产品来说,附加的晶体管需要成比例地增加电源容量。相应地,微处理器的热量输出也显著上升。Intel最新的Pentium4芯片大约产生100W的热量。相比486,后者发热量不足10W。芯片密度的增加以同样的比率增大了热量的产生。由此联想到数据中心的设计,我们所看到的是,功率密度的要求在过去的几年中迅速膨胀。不久前,每平方米50W还是一个比较典型的数值,但是目前的大部分设计人员则将这一数值增大到每平方米150~200W甚至更多。仅仅在最近几年中,系统基础结构就实现了惊人的扩展,以应对数据中心的电源容量和冷却不断变化的要求。

预测未来电源需要这一极富挑战性的任务引发了最严重的数据中心问题之一,即UPS设计容量供求的不平衡。这一问题的出现不仅影响了数据中心的效率、利用率和支持能力,而且还妨碍了资本的最优使用。例如,一个大型数据中心建成后,经常需要2~4年才能达到或接近设计能力。因此,在前几年的运营中对电源容量的需求很少。而这时的用户经常会斥资数百万美元建设能够达到全部设计容量的数据中心,包括购买数兆瓦的冗余电源系统来支持数据中心。系统在以最小限度的低容量运行几年后,才能使用全部容量。在这种情况下,大量的资金用于最初的容量建设,以满足多年以后才会出现的需要。具有讽刺意味的是,在使用全部电源容量的同时,数据中心仍有很大的占地面积可供使用。出现这种情况是因为设备的功率密度在两年内不断增加,电源容量已被全部使用,但占地面积却十分充足。瞬息万变的设备技术使这种情况变得更糟,通常数据中心每四年就需要一次大修。除了大修的费用,数据中心的宕机风险也在实施过程中大幅度增加。

图1大型互联网数据中心的利用率典型曲线

这对于以出租数据中心为主要收入来源的设备托管和互联网服务商来说尤其危险。这些公司在正式运营以前就要支付整个设施的费用,但是与此成本对应的收入经常是在多年以后才会收到。对于这类资本密集型行业来说,在获得收入之前承担巨大的成本负荷是极其危险的(如图1所示)。应注意的是,利用率曲线可能有很大的变化,而且两年通常是一个非常乐观的数字。从图1中可以看出,供求平衡点几乎永远也不存在,这样就会导致巨大的成本,无法实现最优的利用率。

[1]
[2]
[3]
[4]