随着城市化进程加快,交通拥挤、交通事故、环境污染、能源短缺等问题已经成为世界各国面临的共同问题。智能交通系统将从缓解交通拥挤、减少交通事故、降低交通环境影响以及提高生产效率等方面生产可观的社会和经济效益。“十三五”期间,随着公路、铁路、城轨、水路、航空建设的进一步加快,智能交通行业的发展必将加快其步伐。预计未来几年仍将以20%的年增长率高速增长。
智能交通产业越来越热,市场化需求不断增加,但就目前智能交通行业技术来讲,仍面临诸多挑战,技术升级面临阻碍,其主要因素有三个:
数据割据与断层需要破题
智能交通的基本作用,是通过交通领域全业态数据的立体采集与处理,以支撑更聪明的交通建设、管理、运行决策。这种以数据支撑的科学决策,小到自动驾驶、出行时间管理,大到路网的运能调配、运送方式决策、交通管理绩效评价等。
由于交通问题的多样性和社会性,交通类数据的采集和处理本应是社会性的工作,然而,由于行政架构上遍布多部门,地理架构上遍布全国,事实上又形成了数据割据和断层的局面。很多时候,掌握各类数据的各部门,没有自发的愿望,也没有机制去激励其分享这些数据。涉及这类问题比较典型的,如公安系统的事故数据、医疗卫生部门的交通事故医疗救助数据、交通部门的交通设施维修数据。这些原本取之于民的数据并没有统一的开放平台进行交换和融合。这就导致了我们评价道路通行安全条件时,缺少了最重要的数据元素,每年各地该支出的养路资金和安保投入,也就缺少了重要的评价和决策依据。
再比如,公路货运的智能化管理问题。动态的吨位数据和车辆行驶数据都在各个运输公司手里,全国缺乏统一的平台进行采集、管理和调度,造成货运信息难匹配,货车空驶多、浪费严重。
类似问题,需要在大数据时代背景下,突破行政管辖权属的制约,通过政策乃至立法强行推动所有公共数据的公开;用更微观的手段建立更宏观的视野,更好地发挥中央行政干预优势,缔造全国“一盘棋”的智能交通数据支撑体系。
车辆身份识别和动态采集能力需要提升
鉴别和采集车辆身份的能力,是实现交通智能化管理的基本立足点。在每一路段上都能直接获取途经车辆可识别的基本信息、掌握车辆的实时通行数据,才能建立车的基本通行统计类数据,从而实现实时监控、定性和定位采集、提前预测、及时预警,完成区域协调、路网流量调配、控制、疏导、收费和安防等任务。所有这些工作的关键,就是“车辆身份”的自动鉴别和采集。这涉及到手段和效率、成本和质量以及分析的思路和运用的方法。
对此,我国现行技术还有很多地方需要改善。比如,车辆牌照技术。与发达国家相比,我国当前的车辆牌照制作技术有大约40年的差距,不仅加工工艺差、效率低下、污染严重、仿造门槛低,而且不利于智能化识别,特别是不良视认条件或车辆高速运行状态下,车牌信息采集成功率低,数据质量不可靠。这就严重影响了智能化管理的努力和进步。而近年来出现的高清号牌呈现技术,正在将车辆身份识别技术推向更高境界。伦敦现行的依靠车辆牌照拍摄技术建立的拥堵费征收系统,就是这个技术方向的杰出代表。
我国在有效建立车辆身份自动化识别与采集系统之前,大量的智能交通功能无法实质性推进。
数据分析能力需要人才支撑
在实现了数据共享、车辆身份自动识别效率提升后,我们要做的重点工作就是数据分析。为什么这么说?我们以“交通管理绩效评价”为例,来解释数据分析能力的重要性。
现在提起治堵,经常会听到“公交优先”“路口要信号灯控”。这些措施,效果到底如何?城市交通管理的关键是实现居民出行时间的优化,即能够获得稳定和合理的通勤时间。如果因为设置了公交车道,但全社会的通勤时间增加而不是减少了,那就是画蛇添足。如果我们能够有一套可以细化到单车和个人的上路时间统计系统,就可以精确地对“公交车道”的效果进行科学的评价。
同理,信号灯控的社会价值,也可以依托这样的系统评价。其基本的思路,就是获得所有车辆的出行轨迹和起始点之间的时间记录数据。如果获得的这些数据几乎没有瑕疵,结论自然就能浮出水面。
具备这种数据分析能力后,不仅可以评价交通管理措施的效果,还可以准确地测算出通勤车流对路网的压力点和时间点,进而预测各个路网将在未来某时刻会出现的交通流量,以及进行更精准的流速预告。这种服务能力,要比向社会提供一个全市路网车速的指数,有更现实的服务意义;对调配路网资源也有莫大好处,对及时调整交通控制措施、降低怠速排放、改善空气质量等,也有莫大贡献。
要具备这样的数据分析能力,就要培养专业人才梯队。这支队伍不仅要懂计算机和通信技术,还要懂交通,懂统计学和社会学。总之,一支具备综合学科技术素养的高素质队伍才能胜任需要。在这方面,我们的人才培育机制,特别是用人机制,还有很大改善空间。